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INTRODUCTION

Measurement uncertainty (MU) is defined as “non-negative parameter characterizing
the dispersion of the quantity values being attributed to a measurand™ I'l. MU may also
be used as a reference for conformity assessments to demonstrate that whether the
technical regulations or standard procedures are met by a certain product. The top-down
strategy can directly estimate the uncertainty by calculating the reproducibility and
repeatability. This study seeks to apply two lop-down approaches, i.e. intermediate
precision and repeatability standard deviation, to compare the performance in estimating
the MU. The estimates of MU could serve as relerences for laboratory analysis
personnel and stakeholders in decision-making.

MATERIALS &METHODS

1. Quantitative Analysis of GMOs

In this study, we uscd thirty samples for the proficiency test of the genctically
modified (GM) events containing dilferent concentrations of the powdered certified
reference materials, including 0.5, 1, 10% for DP-305423 soybean (ERM-BF426) and
0.49, 0.98, 4.91% for NK603 maize (ERM-BF415), respectively. Ten DNA extracts of
cach sample were analyzed using the real-time PCR (StepOne Plus) purchased from
Applied Biosystems (Thermo Fisher, USA). Each DNA extract was quantified in
triplicate and expressed by the average of triplication. The quantification was repeated
twice to achieve two independent estimates of the GM concentrations for the DP-
305423 soybean (ERM-BF426) and NK603 maize (ERM-BF415), respectively.
2. Uncertainty Iistimation
1) Outlier Detection

A ding to the r of ISO 5725, prior to the estimation of uncertainty,
Cochran’s statistic should be used for the outlicr testing 121,
2) Intermediate Precision Approach

Intermediate precision (RSDp) may reflect the variation in a single laboratory;
therefore, the methods proposed by Zel er al. (2007) 31 could be applied to the MU
estimation. The RSDR_could be regarded as a combined standard uncertainty (uc(y)).
The expanded uncertainty (U) at the 95% confidence level was calculated as follows:

U=2xRSDR

3) Repeatability Standard Deviation Approach

The repeatability standard deviation method proposed by Ambrus (2004) Y was
estimated by duplicated analysis data. The repeatability standard deviation was defined
as the uncertainty of the laboratory phase which could be further divided into “analysis™
and “samplc processing” parts, respectively. The uncertainty of analysis part was
cstimated by the recovery cxperiment. The uncertainty of sample processing was
estimated by the law of propagation of uncertainty. In this study, the concentration of
was certificd reference materials regarded as the true concentration of the sample and
could be used to determine the relative standard uncertainty of recovery.
3. Conformiry Assessment
s study also utilized guard band and consulted 0.9% labeling threshold (according
to European regulation) to evaluate the critical value of the decision, serving as a bas
for conformity assessment 51, The guard band was described as follows:

guard band=0.9%xu¢ (y)x1.65
Then. the critical value of the decision was derived in the following:
threshold value=0.9% * guard band

The higher limit defined as “high confidence of correet rejection™ represented that
stakeholder decision-makers would have higher possibility to determine the tested
sample possessed GM content less than the maximum concentration of 0.9%. The lower
limit defined as “high confidence of correct acceptance™ and represented that
stakeholder decision-makers would have higher possibility to determine the tested
sample as possessing over 0.9% threshold concentrations of GM content.

RESULTS

1. Qutlier lest

A ling to the rec ation of 1SO 5725, the Cochran’s statistical testing was
used to determine the outliers in the dataset of DP-305423 soybean and NK603 maize,
respeetively. Seven outliers were deleted from two GM cvents. The deleted observations
for two events tended Lo have a higher mean concentration (Fig. 1).
2. Intermediate Precision Approach

The relative expanded uncertainty (k — 2) values of GM soybcan DP-305423 cvent
and GM maize NK603 event estimated by the intermediate precision approach were
22.52% and 18.37%, respectively (Fig. 2).
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3. Re bility Standard 1. Approach

The relative expanded uncertainty (k = 2) value of GM soybean DP-305423 event
and GM maize NK603 event estimated by the repeatability standard deviation approach
were 24.71% and 20.55%, respectively (Fig. 2). The primary source of variation was
the sample preparation, accounting for 86.57% to 94.73% of the total variances (Fig. 3).
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Fig. 3 Fstimates of the relative expanded uncertainty
by repeatability standard deviation.
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Fig. 2 Fstimates of the relative expanded uncertainty
by intermediate precision and repeatability standard
deviation.

4. Conformity Assessment

Using the repeatability standard deviation approach, the critical value of the decision
obtained from guard band indicated that two GM cvents with “high confidence of
correct rejection” were 1.07% and 1.04%, respectively: events with “high confidence of
correct acceptance” were 0.73% and 0.76%, respectively. Using the repeatability
standard deviation approach, the critical value of the decision obtained from guard band
indicated that two GM events with “high confidence of correct rejection™ were 1.08%
and 1.05%; events with “high confidence of correct acceptance™ were 0.72% and 0.75%
(Table 1).

‘lable 1 Critical value of the decision determined by the guard band (threshold value 0.9%).
=
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CONCLUSION

Two top-down estimation approaches resulted in consistent MU values of GM events.
When the value of MU was too high, personnel could use the repeatability standard
deviation approach to distinguish the main resource of variation in MU. Intermediate
precision approach could be applied to other analyses with similar design of
experiments. tly, these results can assist stakeholders or laboratory analysis
personnel in decision-making.
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Fig. 1 Validation results of the real-time PCR method for the determination of GM content in GM
DP-305423 event using three different accuracy profiles. (Acceptance limits A= £25%})
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Table 1 Estimates of the relative expanded uncertainty in GM soybean DP-305423 event by
different accuracy profiles.
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Fig. 2 Comparison of accuracy profile and IQC procedure in estimating MU of different
concentration in GM soybean DP-305423 event.
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| Recently, many studies have discussed the under-dispersion in germination tests. Under-dispersion is that empirical variance between replicates is less than the binomial sampling

lvariance. These studies concluded that analysts could iously adjust the ination test results based on the thought that the seeds of the replicates were from the same seedl
lot. In order to prevent analysts iously adjusting the germination test results, this study proposed two methods: the modificd multipl lyst tests (MMA tests) and multiple-
I'anestigation tests (MI tests). I
Topic 1: MMA tests could effectively Topic 2: Under-dispersion was reduced with more
reduce the under-dispersion investigation frequency
| 1. Material and methods | 2. Marerial and methods I
I » MMA tests were modified from the multiple-analyst testst!] for the small labor.\lmiesl + Inthe MI test the investigation [requency was more than once. I
| (Tig.1). I * Three samples were randomly sampled from cach sced lot and the invcsligationl
»  MMA data were generated by permuting the blind tests data. [requency of the samples was set to once, twice, and thrice, respectively (Fig. 2).
I » The permutation was repeated 10,000 times, so 10,000 MMA test results were oblained,l * The analyst was assigned randomly to each investigation and the results of replicates inl
I + There were 90 samples in a MMA test for rice (Oryza sativa L.) and pepper (Capsi | all investigations were ind d I
annuum L.), respectively. |
I I Sampe  Frequency ‘The schedule of investigation | |
I gl 1 | e i |
i
| f - |
I Maltiple-analyst test I = I
| | i sesax > o BT |
& e ® Q
! )4 | - = = == I

Fig. 2 The illustration of MI tests.

2. The evaluation of the under-dispersion

To evaluate the eflect of MMA and MI tests on reducing the under-dispersion, F-values were calculated and the skewness for the distribution of F-value was used to evaluate the
chtcnt of under-dispersion. The F-value was the ratio of the empirical variance and the binomial sampling variance. The sk, skga. and skg;!?! were also calculated. When thcscl
Iﬂefﬂcienls closed to 1, it implied that the distribution of F-value was more right-skewed. It could be used to quantify the extent of under-dispersion. J
| 3. Result T3 Result |
I ) F:lr 5?90 _'t'ccl tc'sts,lﬂ!c vz?ll‘lcs il Bl il e I TREN Bl L thcl * The sk, sken. and skg;; were used to quantify the extent of under-dispersion due to Lhel

values in single-analyst tests. e I unconscious adjustment by analysts.
I * For 9,917 pepper tests, the values were also less than the values in single-analyst tests. i ; . . .

I + Fig. 3 showed that the effect of MMA on reducing the under-dispersion was morel * The valucs of skg,. sk, and skg, were deercased with more investigation ﬂ'c‘l“c"c!’-l
efficient for pepper than for rice. mcaning that fewer F-value value was less than | when the investigation frequency!
| | increased (Table 1). |
= P i I » It indicated that the extent of the under-dispersion was reduced with more investigation,
I i == e I frequency. I
: B E i | Table 1. The statistics of F-value for investigating once, twice, and thrice in MI tests. !
— 1
| I T« | N T A

- - = I Statistics Once I'wice I'hrice
| " Sample size 29 26 30 |
| : - :\ : | Standard deviation 08215 06430 08021 |
I I— l:‘ | Midrange 1.8564 12162 1.4748 |

& g | Mean 1.1965 0.9629 1.2268
| I | Median 10298 0.8694 13292 |
| ? o e | Mode 08880 07060 10129 |
I ] I sk 0.5475 0.4537 03223 I

Fig. 3 The boxplots of sk, skg;,, and sk, for rice and pepper in MMA tests. The red Iincs' skaa 0.4674 0.3084 0.1016
denote the cocfficients of sk for rice in singl lyst tests. The blue lines dcnotcl skp 0.3731 0.2253 0.1730 I

|t_he coefficients of sk for pepper in singl lyst tests

e e e e e e e i )

The MMA tests reduced the extent of the under-dispersion due to the i dj by analysts because of i ing the independ b the repli The Ml
tests also reduced the extent of under-dispersion by increasing the investigation frequency. Two methods can prevent analysts from adj the ger test results ious| ,i
and can cffectively reduce the under-dispersi
N N N I N ===
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